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ABSTRACT: Recall that a finite group is a 
 groups-D if evety subgroup-  is contained in a Hall 

 subgroup- and any two Hall subgroups-  are conjugate.In this paper we show that if finite group 

G=AB be the product of two subgroups A and B. If A,B, and G are group,-D  for a set   of primes, 

then there exist Hall  -subgroups A0 of A and B0 of B such that A0B0 is a Hall  -subgroups of G. 
 

Keywords: Hall subgroups- , Finite group, group,-D  product group 
 

INTRODUCTION 
 
 In 1940 G. Zappa(see [24]) and in 1950 J.Szip (see [23]) studied bout products of groups concerned finite groups. 
In 1961 O.H.Kegel (see [8]) and in 1958 H.Wielandt (see [10]) expressed the famous theorem, whose states the 
solubility of all finite products of two nilpotent groups . 
 In 1955 N.Itô (see [7]) found an impressive and very satisfying theorem for arbitrary factorized groups. He proved 
that every product of two abelian groups is metabelian. Besides that, there were only a few isolated papers dealing 
with infinite factorized groups. (P.M. Cohn ,1956) (see[21]) and L.Redei ,1950)(see [22])  considered  products of 
cyclic groups, and around 1965 O.H.Kegel (See [30] & [31]) looked at linear and locally finite factorized groups. 
 In 1968 N.F. Sesekin (see [19]) proved that a product of two abelian subgroups with minimal condition satisfies 

also the minimal condition . He and Amberg independently obtained a similar result for the maximal condition around 

1972 (See [20]&[1]). Moreover, a little later the proved that a soluble product of two  nilpotent subgroups with maximal 

condition likewise satisfies the maximal condition, and its Fitting subgroups inherits the factorization. Subsequently 

in his (Habilitationsschrift ,1973) he started a more systematic investigation of the following general question. Given 

a (soluble) product G of two subgroups A and B satisfying a certain finiteness condition x , when does G have the 

same finiteness condition x ?(see [20]) 

 For almost all finiteness conditions this question has meanwhile been solved. Roughly speaking, the answer is 

'yes' for soluble (and even for soluble-by-finite) groups. This combines theorems of B. Amberg (see [1], [2],[3],[4] and 

[6]) , N.S. Chernikov (see [5]), S. Franciosi, F. de Giovanni (see [3],[6],[32],[33],[34],[35], and [36]), O.H.Kegel (see 

[8]), J.C.Lennox (see [12]) , D.J.S. Robinson(see [9] and [15]), J.E. Roseblade(see [13]), Y.P.Sysak(see 

[37],[38],[39]and[40]), J.S.Wilson (see [41]), and D.I.Zaitsev(see [11] and [18]). 

 Now, in this paper, we study the residual finite group and min-by-max subgroups of the group G and its relations, 
and the end we prove that if finite group G=AB be the product of two subgroups A and B. If A,B, and G are 

group,-D  for a set   of primes, then there exist Hall  -subgroups A0 of A and B0 of B such that A0B0 is a 

Hall  -subgroups of G.  
 
2. Priliminaries : ( elementary properties and theorems.) 

 In this chapter we express the elementary Lemma and Diffinitons whose used the prove the mantheorem in 
chapter 3. 
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2.1. Lemma: 

(See 25) Let the groups 
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where t1 H,...,H  are subgroups of G. Then at least one of the subgroup 
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 has finite index in G.  

 

Proof :  Let s be the number of distinct subgroups among t1 H,...,H . If s=1, the lemma is clear. Suppose that s>1, 
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 This proves that G is the union 

of finitely  many cosets of the subgroups jH
, where j is not in I. As the number of  distinct subgroups among these 

is s-1, by induction on s at least one of them has finite index in G.  
 
2.2. Lemma: 
  Let the group G=AB be the product of two subgroups A and B. If A0 and B0 are subgroups of finite index of A 
and B, respectively, then the subgroup H=<A0, B0> has index at most mn in G, where |A:A0|=m and |B:B0|=n.  
 
Proof :  Let {a1,…,am} be a left transversal of A0 in A and {b1,…,bn} a right transversal of B0 in B. Then.  

G=AB=
ii

-1
ii

ji,
i00i

ji,

b)aHa(abBAa  
 

is the union of finitely many right cosets of conjugates of H. It  follows from Lemma 2.1 that H has finite H has finite 
index in G. To obtain the required bound for |G:H|, it is clearly enough to consider the finite factor group G/HG, where 
HG is the core of H in G. Consequently we may suppose that G is finite. Then.  
 

mn,|H| mn
|B  A |

|B| . |A|

|B  A |

|B| . |A|

|B  A |

|B| . |A|
|G|

00

00

00


  And so |G:H| mn.   

 
2.3. Lemma: 
 (See [1]) Let the group G=AB be the product of two subgroups A and B.  
(i) If A and B satisfy the maximal condition on subgroups, then G satisfies the maximal  condition on normal 
subgroups.  
 (ii) If A and B satisfy the minimal condition on subgroups, then G satisfies the minimal condition on normal 
subgroups.  

Proof: (i) Let Nnn )(H  be an ascending sequence of normal subgroups of G. Then Nnn )H(A   and 

Nnn )H(B   are ascending sequences of subgroups of A and B, respectively. Hence  
 

1nn1nn AH B AHB    and    H A HA   
 

For almost all n. It  follows that  

1n1nnnn AH)AH B A()AHA(BAH AB AH   
 

And so  

1n1n1n1nn1nnn HH AHHAH)H (AH H   
 

  
 For almost all n. Therefore G satisfies the maximal condition on normal subgroups.  
The proof of (ii) is similar.  
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2.4.Lemma:  
 Let the group G=AB be the product of two subgroups A and B. If x, y are elements of G, then G=AxBy. Moreover, 
there exists an element z of G such that Ax=Az and By=Bz.  

Proof :  Write xy-1=ab with a in A and b in B. If z=a-1x, then x=az and 
z,by -1

 so that Ax=Az and By=Bz. It follows 
that G= Az Bz= Ax By. 
 
2.5. Difinition : 

 Recall that a finite group is a 
 groups-D if evety subgroup-  is contained in a Hall  subgroup- and any 

two Hall subgroups-  are conjugate.  
 
2.6. Lemma: 

 Let the finite group G=AB be the product of two subgroups A and B. If A,B, and G are group,-D  for a set   

of primes, then there exist Hall  -subgroups A0 of A and B0 of B such that A0B0 is a Hall                          -subgroups 
of G.  

Proof:  Let A1, B1, and G1 be Hall  -subgroups of A, B, and G, respectively. Since G is a group,-D there 

exist elements x and y such that 
y
1

x
1 B and A

 are both contained in G1. It follows from Lemma 2.4 that 
zx A A 

 and  

zy B B 
for some z in G. Thus 

-1xz
10 A A 

and 

-1yz
10 B B   are Hall  -subgroups of A and 

B, respectively, which are both contained in 

-1z
1

G 
0

G 
. Clearly the order of 00 BA   is bounded by the maximum              

 -divisor n of the order of BA  since 
,

|B  A|
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It follows that 

.|BA|
|B  A|

|B| . |A|

n

|B| . |A|
|G| 00

00

0000
0 

  Therefore A0B0=G0 is a Hall   -subgroup of G. 
 
2.7.Corollary: 
  Let the finite group G=AB be the product of two subgroups A and B .Then for each prime p there exist Sylow p-
subgroups A0 of A and B0 of B such that A0B0 is a Sylow p-subgroup of G.  
 
Proof: See [5] 
 
2. 8. Corollary : 
  Let the finite group G=AB=AK=BK be the product of three nilpotent subgroups, A,B, and K, where K is normal 
in G. Then G is nilpotent .  
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